Lecture 16

Physics 404

We go back to the problem of an ideal gas. Consider the solutions to the Schrodinger equation
for a single particle in a box, as we did before (Lecture 9). We call these solutions ‘orbitals’. There are
an infinite number of such solutions. We make the leap and assume that if there are N identical
particles in the box, and they do not interact, we can describe the system as being occupied by N
particles occupying N single-particle orbitals. This is a big assumption that will be revisited later.

The spin-statistics theorem of quantum mechanics states that there are two types of elementary
particles: Fermions (of half-integer spin) and Bosons (of integer spin). A list of elementary particles and
their spins is posted on the class web site.

If many identical Fermions are placed in a box and there is strong overlap of the wavefunctions,
the Pauli exclusion principle says that no two of these Fermions can occupy the same exact quantum
state. This places a strong constraint on the Gibbs sum for the Fermion case. These considerations do
not apply to many identical Boson systems. In the Fermion case, a particular orbital can either be un-
occupied or occupied by exactly 1 particle. In the Boson case, any number of particles can occupy a
particular orbital, including 0.

First we will calculate the Gibbs sum for the Fermion case. We consider the system to be a
single orbital, arbitrarily chosen from the infinite number of single-particle orbitals available to a particle
in a box. The reservoir is the set of all other orbitals. We assume that the system and reservoir are in
both thermal and diffusive equilibrium. The Gibbs sum is

Z=3nm0 Ze,qye™M T T=T0 T qneN T = e(On=es)/7 4 e(Ih—2:)/T | We adopt the
convention that the zero particle state is the zero of energy &9y = 0. The single particle state has an

energy we call &1y = €. The Gibbs sum becomes Z =1 + e(=8)/T = 1 4 1e#/T, where A is the
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activity. The thermal average occupancy of the state can be calculated simply as (N) = 0 X TreG o +
1 e /T )eE/T Dividi db by 1e—¢/T gi —(N) = 1 hich i
X TG0k = TreG—oye Dividing top and bottom by Ze gives f(e) = (N) = ey Whichiis

known as the Fermi-Dirac distribution. We will make a further leap by saying that this distribution
applies for any orbital of any energy €, because the original choice of orbital was arbitrary. At zero
temperature this distribution is f(¢) = 1, fore —n < 0, and f(¢) = 0, fore — u > 0. In other words all
the states of energy below p are filled, and all states above p are empty. The filled states are sometimes
called the ‘Fermi sea’. At finite temperature, the discontinuous distribution softens with f(e = p) =
1/2. Only Fermions within energies a few T below u will be ‘promoted’ to the un-occupied higher
energy states above p.

Next we derive the Gibbs sum for the Boson case. Once again we consider the system to be a
single orbital, arbitrarily chosen from the infinite number of single-particle orbitals available to a particle
in a box. The reservoir is the set of all other orbitals. We assume that the system and reservoir are in

both thermal and diffusive equilibrium. The Gibbs sumis Z = Yy ZES(N) e(NI=2)/T and any

number of particles can go into the orbital, hence the first sum could go up to N. For a large system, N
is effectively infinite. The orbital has a single-particle energy of €, and we assume that when it is
occupied by N particles the energy of the system is simply €, (N) = Ne. The Gibbs sum now becomes

1



N
Z =R, eNu-Ne)/T — Yx=0(Ae™¥/T) " If we assume that Ae"#/T < 1, then this sum will converge to
1 . dlogZ
Z = T We can evaluate the thermal average occupation number as (N) = 7\%,
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f(e) =(N) = TS e(g_ul)ﬁ_l, which is known as the Bose-Einstein distribution. Note that it differs
A

which gives

from the Fermi-Dirac distribution only in the minus sign in the denominator!

Taking the logarithm of both sides of the convergence condition Ae¢/T < 1 for Bosons results in
the constraint ?L > 0, which says that the chemical potential is bounded above by the lowest energy
orbital in the system.

Note that in the limit ST;“ > 1, both distributions go to the same functional form, f(¢) =

e~(E=W/T which is the classical limit f(€) < 1, which is equivalent to the dilute limit nl « 1.
0



