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Lecture 16 

Physics 404 

 

 We go back to the problem of an ideal gas.  Consider the solutions to the Schrodinger equation 
for a single particle in a box, as we did before (Lecture 9).  We call these solutions ‘orbitals’.  There are 
an infinite number of such solutions.  We make the leap and assume that if there are N identical 
particles in the box, and they do not interact, we can describe the system as being occupied by N 
particles occupying N single-particle orbitals.  This is a big assumption that will be revisited later.   

 The spin-statistics theorem of quantum mechanics states that there are two types of elementary 
particles: Fermions (of half-integer spin) and Bosons (of integer spin).  A list of elementary particles and 
their spins is posted on the class web site. 

If many identical Fermions are placed in a box and there is strong overlap of the wavefunctions, 
the Pauli exclusion principle says that no two of these Fermions can occupy the same exact quantum 
state.  This places a strong constraint on the Gibbs sum for the Fermion case.  These considerations do 
not apply to many identical Boson systems.  In the Fermion case, a particular orbital can either be un-
occupied or occupied by exactly 1 particle.  In the Boson case, any number of particles can occupy a 
particular orbital, including 0. 

First we will calculate the Gibbs sum for the Fermion case.  We consider the system to be a 
single orbital, arbitrarily chosen from the infinite number of single-particle orbitals available to a particle 
in a box.  The reservoir is the set of all other orbitals.  We assume that the system and reservoir are in 
both thermal and diffusive equilibrium.  The Gibbs sum is 

𝒵𝒵 = ∑N=0 ∑ e(Nμ−εs )/τ
εs (N) = ∑1

N=0 ∑ e(Nμ−εs )/τ =εs (N) e�0μ−εs(0)�/τ + e�1μ−εs(1)�/τ .  We adopt the 
convention that the zero particle state is the zero of energy εs(0) = 0.  The single particle state has an 
energy we call εs(1) = ε.  The Gibbs sum becomes 𝒵𝒵 = 1 + e(μ−ε)/τ = 1 + 𝜆𝜆e−ε/τ, where 𝜆𝜆 is the 

activity.  The thermal average occupancy of the state can be calculated simply as 〈N〉 = 0 × 1
1+e(μ−ε)/τ +

1 × 𝜆𝜆e−ε/τ

1+e(μ−ε)/τ = 𝜆𝜆e−ε/τ

1+e(μ−ε)/τ .  Dividing top and bottom by 𝜆𝜆e−ε/τ gives 𝑓𝑓(𝜀𝜀) = 〈𝑁𝑁〉 = 1
e(ε−μ)/τ+1

, which is 

known as the Fermi-Dirac distribution.  We will make a further leap by saying that this distribution 
applies for any orbital of any energy ε, because the original choice of orbital was arbitrary.  At zero 
temperature this distribution is 𝑓𝑓(𝜀𝜀) = 1, for ε − μ < 0, and 𝑓𝑓(𝜀𝜀) = 0, for ε − μ > 0.  In other words all 
the states of energy below μ are filled, and all states above μ are empty.  The filled states are sometimes 
called the ‘Fermi sea’.  At finite temperature, the discontinuous distribution softens with 𝑓𝑓(𝜀𝜀 = 𝜇𝜇) =
1/2.  Only Fermions within energies a few τ below 𝜇𝜇 will be ‘promoted’ to the un-occupied higher 
energy states above 𝜇𝜇. 

Next we derive the Gibbs sum for the Boson case.  Once again we consider the system to be a 
single orbital, arbitrarily chosen from the infinite number of single-particle orbitals available to a particle 
in a box.  The reservoir is the set of all other orbitals.  We assume that the system and reservoir are in 
both thermal and diffusive equilibrium.  The Gibbs sum is 𝒵𝒵 = ∑N=0 ∑ e(Nμ−εs )/τ

εs (N) , and any 
number of particles can go into the orbital, hence the first sum could go up to 𝑁𝑁.  For a large system, N 
is effectively infinite.  The orbital has a single-particle energy of 𝜀𝜀, and we assume that when it is 
occupied by 𝑁𝑁 particles the energy of the system is simply εs(N) = 𝑁𝑁𝑁𝑁.  The Gibbs sum now becomes 
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𝒵𝒵 = ∑ e(Nμ−Nε)/τ∞
N=0 = ∑ �λe−ε/τ�N∞

N=0 .  If we assume that λe−ε/τ < 1, then this sum will converge to 

𝒵𝒵 = 1
1−λe−ε/τ .  We can evaluate the thermal average occupation number as 〈N〉 = λ ∂log𝒵𝒵

∂λ
, which gives 

𝑓𝑓(𝜀𝜀) = 〈N〉 = 1
1
λeε/τ−1

= 1
e(ε−μ)/τ−1

, which is known as the Bose-Einstein distribution.  Note that it differs 

from the Fermi-Dirac distribution only in the minus sign in the denominator! 

Taking the logarithm of both sides of the convergence condition λe−ε/τ < 1 for Bosons results in 
the constraint 

ε−μ
τ

> 0, which says that the chemical potential is bounded above by the lowest energy 

orbital in the system.   

Note that in the limit 
ε−μ
τ
≫ 1, both distributions go to the same functional form, 𝑓𝑓(𝜀𝜀) ≈

e−(ε−μ)/τ, which is the classical limit 𝑓𝑓(𝜀𝜀) ≪ 1, which is equivalent to the dilute limit 
𝑛𝑛
𝑛𝑛𝑄𝑄
≪ 1. 

 

 


