Lecture 16

Physics 404

We go back to the problem of an ideal gas. Consider the solutions to the Schrodinger equation for a single particle in a box, as we did before (Lecture 9). We call these solutions 'orbitals'. There are an infinite number of such solutions. We make the leap and assume that if there are N identical particles in the box, and they do not interact, we can describe the system as being occupied by N particles occupying N single-particle orbitals. This is a big assumption that will be revisited later.

The spin-statistics theorem of quantum mechanics states that there are two types of elementary particles: Fermions (of half-integer spin) and Bosons (of integer spin). A list of elementary particles and their spins is posted on the class web site.

If many identical Fermions are placed in a box and there is strong overlap of the wavefunctions, the Pauli exclusion principle says that no two of these Fermions can occupy the same exact quantum state. This places a strong constraint on the Gibbs sum for the Fermion case. These considerations do not apply to many identical Boson systems. In the Fermion case, a particular orbital can either be unoccupied or occupied by exactly 1 particle. In the Boson case, any number of particles can occupy a particular orbital, including 0.

First we will calculate the Gibbs sum for the Fermion case. We consider the system to be a single orbital, arbitrarily chosen from the infinite number of single-particle orbitals available to a particle in a box. The reservoir is the set of all other orbitals. We assume that the system and reservoir are in both thermal and diffusive equilibrium. The Gibbs sum is

 $\mathcal{Z} = \sum_{N=0} \quad \sum_{\epsilon_s(N)} e^{(N\mu - \epsilon_s)/\tau} = \sum_{N=0}^1 \quad \sum_{\epsilon_s(N)} e^{(N\mu - \epsilon_s)/\tau} = e^{\left(0\mu - \epsilon_s(0)\right)/\tau} + e^{\left(1\mu - \epsilon_s(1)\right)/\tau} \ .$ We adopt the convention that the zero particle state is the zero of energy $\epsilon_{s(0)} = 0$. The single particle state has an energy we call $\epsilon_{s(1)} = \epsilon$. The Gibbs sum becomes $\mathcal{Z} = 1 + e^{(\mu - \epsilon)/\tau} = 1 + \lambda e^{-\epsilon/\tau}$, where λ is the activity. The thermal average occupancy of the state can be calculated simply as $\langle N \rangle = 0 \times \frac{1}{1 + e^{(\mu - \epsilon)/\tau}} + \frac{1}{1 + e^{(\mu - \epsilon)/\tau}} = \frac{1}{1 + e^{(\mu - \epsilon)/\tau}}$

 $1 \times \frac{\lambda \mathrm{e}^{-\varepsilon/\tau}}{1 + \mathrm{e}^{(\mu - \varepsilon)/\tau}} = \frac{\lambda \mathrm{e}^{-\varepsilon/\tau}}{1 + \mathrm{e}^{(\mu - \varepsilon)/\tau}}$. Dividing top and bottom by $\lambda \mathrm{e}^{-\varepsilon/\tau}$ gives $f(\varepsilon) = \langle N \rangle = \frac{1}{\mathrm{e}^{(\varepsilon - \mu)/\tau + 1}}$, which is known as the Fermi-Dirac distribution. We will make a further leap by saying that this distribution applies for any orbital of any energy ε , because the original choice of orbital was arbitrary. At zero temperature this distribution is $f(\varepsilon) = 1$, for $\varepsilon - \mu < 0$, and $f(\varepsilon) = 0$, for $\varepsilon - \mu > 0$. In other words all the states of energy below μ are filled, and all states above μ are empty. The filled states are sometimes called the 'Fermi sea'. At finite temperature, the discontinuous distribution softens with $f(\varepsilon = \mu) = 1/2$. Only Fermions within energies a few τ below μ will be 'promoted' to the un-occupied higher energy states above μ .

Next we derive the Gibbs sum for the Boson case. Once again we consider the system to be a single orbital, arbitrarily chosen from the infinite number of single-particle orbitals available to a particle in a box. The reservoir is the set of all other orbitals. We assume that the system and reservoir are in both thermal and diffusive equilibrium. The Gibbs sum is $\mathcal{Z} = \sum_{N=0} \sum_{\epsilon_s(N)} e^{(N\mu-\epsilon_s)/\tau}$, and any number of particles can go into the orbital, hence the first sum could go up to N. For a large system, N is effectively infinite. The orbital has a single-particle energy of ε , and we assume that when it is occupied by N particles the energy of the system is simply $\varepsilon_s(N) = N\varepsilon$. The Gibbs sum now becomes

 $\mathcal{Z} = \sum_{N=0}^{\infty} e^{(N\mu - N\epsilon)/\tau} = \sum_{N=0}^{\infty} \left(\lambda e^{-\epsilon/\tau}\right)^{N}. \text{ If we assume that } \lambda e^{-\epsilon/\tau} < 1 \text{, then this sum will converge to } \mathcal{Z} = \frac{1}{1 - \lambda e^{-\epsilon/\tau}}. \text{ We can evaluate the thermal average occupation number as } \langle N \rangle = \lambda \frac{\partial \log \mathcal{Z}}{\partial \lambda}, \text{ which gives } f(\epsilon) = \langle N \rangle = \frac{1}{\frac{1}{\lambda}e^{\epsilon/\tau} - 1} = \frac{1}{e^{(\epsilon - \mu)/\tau} - 1}, \text{ which is known as the Bose-Einstein distribution. Note that it differs from the Fermi-Dirac distribution only in the minus sign in the denominator!}$

Taking the logarithm of both sides of the convergence condition $\lambda e^{-\epsilon/\tau} < 1$ for Bosons results in the constraint $\frac{\epsilon-\mu}{\tau} > 0$, which says that the chemical potential is bounded above by the lowest energy orbital in the system.

Note that in the limit $\frac{\varepsilon-\mu}{\tau}\gg 1$, both distributions go to the same functional form, $f(\varepsilon)\approx \mathrm{e}^{-(\varepsilon-\mu)/\tau}$, which is the classical limit $f(\varepsilon)\ll 1$, which is equivalent to the dilute limit $\frac{n}{n_0}\ll 1$.